cs

en

Laserové svazky

Využití optických metod k diagnostice látek nalézá v poslední době řadu nových aplikací od biologie až po jaderný průmysl. Mezi výhody těchto metod patří zejména rychlé a bezkontaktní měření, analýza výsledků v reálném čase a relativně nízké pořizovací náklady. Optické metody umožňují určit prvkové složení vzorku a rovněž typy chemických vazeb (např. u organických vzorků) s prostorovým rozlišením od jednotek mikrometrů po desítky metrů.

Skupina optických mikromanipulačních technik nabízí zkušenosti:

  • v oblasti konstrukce unikátních přístrojů pro diagnostiku, které využívají spektroskopie laserem buzeného plazmatu (LIBS) a Ramanovu spektroskopii,
  • v oblastech využití fokusovaných laserových svazků v mikrosvětě k bezkontaktnímu přemísťování mikroobjektů a jejich třídění, k vytváření mikrostruktur fotopolymerací, k modifikaci povrchů či objemů struktur laserovou (mikro)ablací,
  • v hledání nových metod identifikace mikroorganismů, jejich separace či destrukce.

Aplikace spektroskopie laserem buzeného plazmatu LIBS

Ve všech oborech roste zájem o experimentální metody, které umožňují okamžitou interpretaci výsledků. Tento zájem úzce souvisí s požadavky průmyslu na rychlé a přesné vyhodnocení daného stavu materiálu nebo okamžité určení jeho parametrů a složení bez časově náročných laboratorních metod. Pro účely rychlé materiálové analýzy se přímo nabízí spektroskopie laserem buzeného plazmatu, označovaná ve zkratce LIBS (Laser Induced Breakdown Spectroscopy), která využívá pulzní lasery s výstupní energií svazku menší než 1 J/pulz. Tato metoda je založena na interakci laserového pulzu s povrchem vzorku, během které dodaná energie odpaří (ablatuje) malé množství materiálu a vytvoří svítící plazma, v jehož záření jsou obsaženy spektrální čáry odpařených prvků. Spektrum je snímáno spektrometrem, analyzováno a výstupem je informace o prvkovém složení ablatovaného materiálu. Detekční limity se pohybují od jednotek do stovek ppm (w/w).

Výhody a aplikační příklady metody LIBS:

  • Jednoduchost a pružnost LIBS předurčují k vyšetřování přímo na místě u sledovaného objektu, tedy i v určité fázi výrobního procesu nebo v určitém období provozu zařízení. Měření probíhá vzdušnou cestou a vyžaduje pouze „viditelný“ kontakt se vzorkem.
    • Aparatura může být mobilní, může využívat vhodný systém optických vláken k vedení laserových pulzů ke vzorku a obráceným směrem přenášet získaný optický signál do spektrometru. Mobilní aparaturu lze především využít na velké nepřemístitelné vzorky nacházející se v těžce přístupných prostředích nebo zdraví ohrožujících provozech (např. v prostředí jaderných reaktorů, chemických podniků, oceláren, zpracování odpadů).
  • Dostupné rozlišení umožňuje identifikovat druhy ocelí (např. FV520, NAG, 17/4 a 18/13) podle zastoupení důležitých prvků, např. Mo, Ni, Ti.
  • Mobilní i statické systémy lze použít k monitorování životního prostředí.
  • Vzorky mohou být ponořeny v tekutinách nebo roztocích a analyzovány přímo na místě v reálném čase a bez zdlouhavé manipulace a dopravy do laboratoře.
  • Běžně detekuje prvky jako Be, U, I, Al, C, Ca, Mg, Cr, Pb, Si, Li, Hg, Sr, Rb, Ti, Fe, Ni, V, Mn, Mo a další.
  • Umožňuje analyzovat velmi malé vzorky pomocí svazku zaostřeného na vzorek do stopy o rozměru desítek mikrometrů, nebo velké vzorky vzdálené desítky až stovky metrů od aparatury (např. sedimenty uvnitř skladovacích nádrží, ocelové konstrukce, aj.).

Kontakt:
Mgr. Ota Samek, Dr.
e-mail: osamek@isibrno.cz
tel: + 420 541 514 127


Podrobnější informace: http://www.isibrno.cz/omitec

Příklad spektra získaného metodou LIBS ze vzorku oceli (vlevo); LIBS sondy vhodné k měření vzorků poořených v kapalinách (vpravo)


Ramanovská laserová spektroskopie

Ramanovská spektroskopie je nedestruktivní technika, která je založena na osvětlení vzorku zářením o určité vlnové délce a detekci záření na jiných vlnových délkách, vzniklého rozptylem ve vzorku. Toto velmi slabé rozptýlené záření obsahuje informace o vibracích atomů v chemických vazbách zastoupených ve vzorku. Spektrální analýza trvající řádově minuty umožňuje identifikovat tyto chemické vazby a odlišit vzorky s různým zastoupením např. DNA, RNA, tuků, cukrů, pigmentů, sacharidů, amidů atd. Ozářený objem vzorku určuje prostorové rozlišení, s jakým lze tyto informace získat. Pomocí silně zaostřených laserových svazků lze získat informace o chemických vazbách obsažených ve vzorku o miniaturním (femtolitrovém) objemu. Přestože princip metody je známý více než sto let, v poslední době se metoda teprve začíná prosazovat v řadě unikátních aplikací především v důsledku rozvoje citlivých detektorů záření.

Výhody a aplikační příklady ramanovské spektroskopie:

  • Umožňuje rozpoznávání jednotlivých druhů mikroorganismů nebo typů biologických vzorků. Lze od sebe odlišit i jednotlivé klony bakteriálních kmenů, např. Staphylococcus epidermidis, což má velký význam v lékařství pro diagnostiku bakteriální infekce již během ambulantní návštěvy pacienta.
  • Charakterizuje a rozpoznává biofilmy v reálném čase, což umožní včas identifikovat riziko zdravotních komplikací pacientů s katetry či kloubními náhradami. Povrchy materiálů používané v lékařství se postupně pokrývají několika vrstvami často různých typů bakterií (biofilm), které jsou odolné vůči medikamentům a způsobují infekci.
  • Nedestruktivně analyzuje chemické složení farmaceutických výrobků a umožňuje tak kontrolovat např. pravost léků v reálném čase.
  • Rozpoznává nádorové a zdravé tkáně/buňky a nabízí se tak jako unikátní diagnostický nástroj pro onkologii jak in vivo (např. při včasném rozpoznání rakoviny kůže), tak in vitro (analýza odebraných buněk či tkání).
  • Umožní rozpoznávat buňky zasažené virovou infekcí.
  • Vytváří chemickou mapu povrchů nebo identifikuje nanostruktury.
  • Lze ji kombinovat s optickou pinzetou a aplikovat i na mikroorganismy volně plovoucí v kapalině.

Kontakt:
Mgr. Ota Samek, Dr.
e-mail: osamek@isibrno.cz
tel: + 420 541 514 127

Podrobnější informace: http://www.isibrno.cz/omitec

Příklad ramaovských spekter tří klonů bakteriálního kmene S.epidermis (vlevo); příklad zpracování ramaovského spektra vedoucího k rozlišení bakterií, které nevytvářejí resp. vytvářejí biofilm (vpravo)


Optické mikromanipulační techniky

Optické mikromanipulační techniky využívají mechanických účinků světla v průběhu změny směru jeho šíření při rozptylu na mikroobjektech. Tímto způsobem je možné prostorově ovlivnit pohyb objektů o rozměrech od desítek nanometrů po desítky mikrometrů pouhým osvícením laserovým paprskem. Optická pinzeta – světelná analogie klasického mechanického manipulačního nástroje – využívá jediného ostře fokusovaného laserového svazku k bezkontaktnímu zachycení objektů. Protože objekty jsou zachyceny v blízkosti ohniska, způsobí změna jeho polohy i následný přesun objektů, tedy jejich řízenou mikromanipulaci. Více ohnisek rozmístěných v prostoru umožní zachytit a pomocí sofistikovaného řízení poloh ohnisek také přemístit více objektů současně. Nyní se tento nástroj používá převážně pro zachycení a přemísťování mikroobjektů v kapalném prostředí (živé mikroorganismy nebo buňky ve vodě či vhodném roztoku, mikroobjekty za průhlednými překážkami apod.). Protože tak malé objekty je možné pozorovat pouze s využitím optického mikroskopu, jsou oba systémy často kombinovány.

Aplikační příklady optických mikromanipulací:

  • Byla vyvinuta kompaktní verze zařízení, která obsahuje integrovaný laser nebo adaptér na optické vlákno a umísťuje se mezi světelný mikroskop a objektiv. Není tedy nutné zasahovat do optické cesty komerčního optického mikroskopu, kterým jsou objekty pozorovány.
  • Optická pinzeta bývá kombinována s řadou optických spektroskopických technik (např. ramanovskou mikrospektroskopií, fluorescenční spektroskopií), které umožňují bezkontaktně a nedestruktivně charakterizovat vlastnosti zachyceného mikroobjektu.
  • Velmi perspektivní je kombinace optických mikromanipulačních technik s mikrofluidními systémy (lab-on-a-chip), např. pro studium stresu na úrovni jednotlivých buněk a pro následnou separaci buněk.
  • Kromě silně fokusovaných svazků lze k optickému zachycení mikroobjektů použít i řady jiných konfigurací světelného pole, které např. umožňují uspořádávání mnoha mikročástic v prostoru nebo na povrchu do pravidelných struktur.
  • Působit lze i na mikročástice v pohybu a dosáhnout usměrnění jejich stochastického pohybu v kapalině (např. v mikrofluidním systému) vedoucího až k separaci různých složek suspenze (nebo různých druhů buněk) pouhým osvícením laserem.

Aplikační příklady laserových svazků fokusovaných do stop o mikrometrovém průměru:

  • Výrazný nárůst intenzity fokusovaného svazku v bezprostředním okolí ohniska lze využít k inicializaci fotopolymerace, tedy chemické reakce, během které z kapalného monomeru vznikne tuhý polymer. Pohybem ohniska laserového svazku v monomeru lze vytvářet i velmi komplikované mikrostruktury.
  • Pulzní fokusované laserové svazky vhodné vlnové délky nabízejí řadu možností jak využít jejich destruktivních účinků (mikroablace) k objemové či povrchové modifikaci objektů včetně zásahů uvnitř živých buněk.

Kontakt:
prof. RNDr. Pavel Zemánek, Ph.D.
e-mail: zemanek@isibrno.cz
tel: +420 541 514 202

Podrobnější informace: http://www.isibrno.cz/omitec

Příklad optického třídění částic


Evropská unie

Operační program Výzkum a vývoj pro inovace